
www.manaraa.com

Chapter 1: Introduction

Developing a software system that meets the purpose for which it was proposed

is the main concern for any software developer. Requirements analysis is the

first and the most critical phase of the software system development. The raw

requirements can be considered as a commitment between the software system

developers and the customer who requested the system under development. The

developers always work hard to achieve the customer's aspirations by

implementing a software system that contains all the business processes which

are explicitly stated and implied in the raw requirements.

Although, the raw requirements are the most influential association between the

developers and the customer, the software system‟s development process does

not originate from natural language raw requirements specified by the customer.

The requirements specifications which are engineered from natural language

raw requirements can be considered as the basis and the first step of software

systems construction in software engineering.

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 1: Introduction

Developing a software system that meets the purpose for which it was proposed

is the main concern for any software developer. Requirements analysis is the

first and the most critical phase of the software system development. The raw

requirements can be considered as a commitment between the software system

developers and the customer who requested the system under development. The

developers always work hard to achieve the customer's aspirations by

implementing a software system that contains all the business processes which

are explicitly stated and implied in the raw requirements.

Although, the raw requirements are the most influential association between the

developers and the customer, the software system‟s development process does

not originate from natural language raw requirements specified by the customer.

The requirements specifications which are engineered from natural language

raw requirements can be considered as the basis and the first step of software

systems construction in software engineering.

www.manaraa.com

Human knowledge and ingenuity is the only resource that can be used to define

the requirements specifications and intermediate models such use cases [12].

Therefore, these requirements specifications and intermediate models do not

cover the raw requirements exactly; they, at best, only approximate them [4].

The main objective of this project is to discover a systematic approach that

processes raw requirements which are expressed in natural language and to

extract the information that helps in constructing the component-based software

system architecture directly. There is relevant research which is concerned with

the analysis of raw requirements and associating them to elements that relate to

software units in order to achieve a better match between the final system and

the raw requirements.

Current reliance on human knowledge and ingenuity in mapping out system

specifications from natural language raw requirements limits software

development to the skills of an individual [12]. There is evidently a need for a

better approach. This approach should be one that is systematic and relies less

on individual human skill.

A component based approach that maps directly from raw user requirements in

natural language to executable components is a viable answer to this problem.

This is the aim of this project. This paper aims to describe a systematic

approach to mapping user requirements directly into executable components.

www.manaraa.com

Tied to this is the notion of architecture in which we will discuss viable and

function architectural systems that allow component addition to partial

architecture in an incremental fashion.

Using the approach described in this paper we should be able to use raw

requirement to immediately select components from the repository or develop

the components and deposit them in a repository. This would then be followed

by constructing a partial architecture and then compose it with the system

architecture after that returning to the raw requirements and carry on in that

manner. Now clear the system must allow for extensibility and that is the detail

that this paper goes into. This paper will also describe how we will use existing

technologies to parse user raw user requirements for valid content and how this

is then employed in deciding which component to make use of.

The foundation of this paper is that an individual raw requirement can be

directly mapped to executable software components. In addition to this, it is also

possible to develop a systematic manner in which to join these components

together whilst allowing flexibility for any other requirement to be added into

the system at any stage of development [7]. In other words, the system should

allow incremental development such that one does not need to read the full

natural language raw requirements before starting development.

www.manaraa.com

This paper will also go in quite some detail on the XMAN tool that will be used

as our component based model. The workings of this approach are discussed in

some detail with a special focus on the tools available for building partial

architectures and the use of components in the repository and adding

components to the same.

Some of this research is based on object-oriented software development while

this project approach intends to use component-based software development.

The component-based development differs from the object-oriented software

development in many features. This report will investigate these differences and

will review the literature of related works such as behaviour tree approach and

object-based mapping approach.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 2: Software System’s

requirements

In developing any piece of software the driving force are the stakeholders and

the goal of developers is to supply stakeholders with software that meets their

specific needs. The issue of software system requirements is concerned with

ascertaining the requirements that a client has and then developing a piece of

software that meets those requirements. A number of issues arise during this

endeavour of ascertaining requirements. Sometimes the client does not know

what they actually want. Sometimes requirements are incomplete or perhaps

ambiguous. Software system requirement techniques are concerned with

overcoming these challenges. We are particularly interested in how we derive

formal specifications for an informal requirements document that is written in

natural language. How do we map the required functionality from the language

of the client to a developer perspective? This chapter touches on these particular

issues, addressing the different aspects of software requirements analysis.

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 2: Software System’s

requirements

In developing any piece of software the driving force are the stakeholders and

the goal of developers is to supply stakeholders with software that meets their

specific needs. The issue of software system requirements is concerned with

ascertaining the requirements that a client has and then developing a piece of

software that meets those requirements. A number of issues arise during this

endeavour of ascertaining requirements. Sometimes the client does not know

what they actually want. Sometimes requirements are incomplete or perhaps

ambiguous. Software system requirement techniques are concerned with

overcoming these challenges. We are particularly interested in how we derive

formal specifications for an informal requirements document that is written in

natural language. How do we map the required functionality from the language

of the client to a developer perspective? This chapter touches on these particular

issues, addressing the different aspects of software requirements analysis.

www.manaraa.com

The Software Requirements Definition document sets out the functional

requirements of the software under development [13]. This document should be

drawn from a reading and interpretation of the Business Functional

Requirements definition document. Before commencement of actual

development work the Software Requirements Definition document must be

fully documented, approved and signed by all stakeholders.

To minimise risk, no actual programming beyond conceptual demonstrations

and proof of concept mockups should be undertaken until the Software

Requirements Definition is approved and signed off.

As already mentioned, the Software Requirements Definition is drawn from the

desired business functionality as laid out by the client. The first stage in

developing the definition is in setting out a clear definition of what the software

is required to do [13]. An exhaustive process of project requirements gathering

must be undertaken. A detailed exploration of project requirements gathering is

outside the scope of this paper.

The project requirements gathering stage gives a users perspective to the

software. The developers must then examine these requirements and build a

„logical model' by using recognised methods and specialist knowledge of the

www.manaraa.com

problem domain. The logical model is a high level abstraction describing

system abilities and should be free from implementation technology [14]. This

model gives structure to the problem set giving it greater manageability.

The logical model is then used in the production of an ordered set of software

requirements. These requirements would specify the level of functionality,

detail performance, set out available interfaces, give assurances over quality and

reliability etc.

This document sets out the developers‟ view of the problem set as opposed to

that of the user. The relationship between the Software Requirements Definition

document and the Business Functional Requirements is not necessarily one-to-

one and often is not.

It is very important that all the stakeholders agree on one consistent view of the

various requirements of the system. The development team will interpret the

software requirements from the user perspective and express this in the

developers view in the form of the Software Requirements Definition. There

may be a disparity between the two which is why it is essential that all

stakeholders approve and sign off the Software Requirements Definition

document before any actual development work begins.

www.manaraa.com

2.2 Requirements Types

Most software requirements can be categorised into the following: Architectural

Requirements, Functional Requirements, Non-Functional Requirements and

Constraint Requirements [15].The following section briefly examines each of

these requirements.

2.2.1 Architectural Requirements:

This is a high level description of what must be done. It identifies the system

architecture of a system that is to be developed. The architectural requirements

are primarily concerned with the shape of the solution space. They establish the

structure of a solution to a set of problems imposed by a set of requirements.

A distinction must be set between Architectural Instance and Architectural

Family. An architectural instance gives a high level abstraction of a software

system. A system architecture would describe, at the very least, how the system

is broken into different components and how those components work together,

carefully setting out dependencies and so on [2]. An effective architecture

would expose the crucial properties of a system. Here we can define crucial as

those properties that must be considered for an effective reasoning of the system

to be carried out.

www.manaraa.com

Contrast the architectural instance with an architectural family, an architectural

family sets out constraint definition on a group of associated systems.

Architectural families can be merely generic idiomatic patterns and styles (for

example, "pipe and filter" or "client-server organisation") and can be reference

architectures (for example, "OSI layered communication standard"). An

effective architecture is one that ensures a measure of integrity constraint but

also permitting a measure of flexibility that subsumes the family of systems to

be built over the life-time of the product family. Architectural requirements are

established by the developers and system architects, not the user.

2.2.2 Functional Requirements

A functional requirement defines the function of a software system or

component [15]. Functional requirements could refer to data manipulation,

calculations or data processing that define what a system is supposed to

accomplish. Functional requirements are often expressed as, "the system must

do<this>" and "the system must do<that>". Functional requirements are a high

level expression.

It is a system/software requirement that specifies a function that a

system/software system or system/software component must be capable of

performing. These are software requirements that define behaviour of the

www.manaraa.com

system, that is, the fundamental process or transformation that software and

hardware components of the system perform on inputs to produce outputs.

A functional requirement will often have a unique name and identifier, a brief

description and a rationale. The key point is the description of the required

behaviour; this must be clear and easy to understand. This type of requirements

is concerned by this research.

2.2.3 Non-Functional Requirements

Non-Functional Requirements are often described as quality requirements.

These are characteristics of the software system that the user is not able to

perceive. It is a software requirement that does not describe what the software

does, but how it will do it. An example would be software performance

requirements, software external interface requirements, software design

constraints, and software quality attributes. Non-functional requirements are

difficult to test; as such they are often evaluated subjectively.

Non-functional requirements will often, if not always, take a descriptive tone;

for example, “the system shall be <requirement>”. An example following this

would the following requirement: “the system shall be <easy to navigate>”.

www.manaraa.com

2.2.4 Constraint Requirements

 Better addressed as “constraints,” these are merely restrictions within which the

software under develop must operate or be developed under. For example a

requirement that states, “software must be ready for developed before year

2000” would be a constraint. This would be a project constraint. Constraints

often refer to non-functional requirements. An example would be a requirement

that demands that the application "require no more than 100mb of hard drive

space during installation" or that "the application must gracefully degrade on

older browsers."

2.3 Attributes of Good Requirements

The IEEE standard stipulates that a Software Requirement Document must

satisfy the following.

a.) Functionality - This should state clearly exactly what the software should do

and, if there is scope for ambiguity, what the software should not do.

b.) External Interface - This part of the specification should detail how the

system will interact with people (human computer interaction), the system's

hardware and other software.

c.) Performance - These requirements regard speed, system availability, speed

of response and recovery time of various functions.

www.manaraa.com

d.) Attributes - These are extensibility, maintainability, security, usability,

correctness, etc. considerations.

e.) Design constraints - These requirements address required standards,

implementation language, database integrity policies, resource limitations,

operating environment, etc.

Even after these types of requirements have been laid out it is important that

they conform to the rigors again imposed by the IEEE Standard. The following

are qualities of good requirements.

a.) Correct - This much is largely self explanatory. The requirements should

state what is actually meant by the client.

b.) Unambiguous - The requirement must have one interpretation. Any

ambiguities must be highlighted and the actual desired requirement stated

explicitly.

c.) Complete - All the requirements necessary for the software to be operational

must be stated.

www.manaraa.com

d.) Ranked for importance - Requirements that are fundamental to the operation

and success of the software should be listed above aesthetic and non-crucial

requirements.

e.) Verifiable - Requirements should avoid subjectivity. Instead of requiring the

software to simply be "fast," requirements should state "on form submission

user should receive response in no more than 600 milliseconds."

2.4 Requirements analysis and software design

Requirements analysis is the process of investigating the properties of a

specification and developing an initial software model [12]. It describes the set

of tasks involved in determining the exact needs or conditions that need to be

met to satisfy the requirements of a client. There are a number of recognized

techniques in the literature on how best to conduct Requirements analysis. A

full a in-depth examination of all these techniques is outside the scope of this

paper. However this section will briefly examine some of the key techniques in

use. This much is necessary for the sake of comparison with our own

component based direct mapping approach that will be introduced in a later

chapter.

www.manaraa.com

Use Cases can be used in requirements analysis. A use case is a structure for

documenting the functional requirements of a piece of software. In each use

case a scenario that shows how the system will interact with humans or other

systems is provided. Use cases are often developed by requirements engineers

in conjunction with stakeholders. Use cases simply show the steps needed to

accomplish a task, they do not show the workings of the system or how the task

will actually be implemented at a development level.

Use cases are just one example of requirements analysis but already an

important question arises. How do we move from have the raw user requirement

in natural language and begin to move toward an more software oriented

expression? How do we manage to correctly draw fromt he raw requirements

what exactly it is that the stakeholders require? A great measure of this relies on

human ingenuity and an understanding of the problem domain.

Semantic case analysis is an effective way of moving from raw requirements in

natural language to a position where the stakeholders requirements are actually

established. This is especially true in object oriented analysis of software

requirements.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 3: Mapping requirements to

software system architecture approaches

After software system requirements are determined as being clear, unambiguous

and giving the developers a clear picture of the system required by the

stakeholders the next challenge is to map these requirements to software system

architecture. How do we take a raw requirement and translate this into a

functional piece of software? Perhaps the greater challenge is not merely having

the knowledge to implement a code level solution for a specific requirement but

how to organise these solutions into a coherent piece of software bringing

together solutions to the various requirements into a coherent and

complementary system. This chapter explores the various approaches to

mapping requirements into software system architectures.

3.1 Object-Oriented software development

Object-oriented software development is a development technique where a

system is considered in terms of "things" or "objects" as opposed to functions or

operations [10]. The system is built up by a combination of objects that interact

with one another and maintain their own state and allow operations to

manipulate that state. Access to information about state representation is

limiting in the concept of information hiding. An object-oriented system is

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 3: Mapping requirements to

software system architecture approaches

After software system requirements are determined as being clear, unambiguous

and giving the developers a clear picture of the system required by the

stakeholders the next challenge is to map these requirements to software system

architecture. How do we take a raw requirement and translate this into a

functional piece of software? Perhaps the greater challenge is not merely having

the knowledge to implement a code level solution for a specific requirement but

how to organise these solutions into a coherent piece of software bringing

together solutions to the various requirements into a coherent and

complementary system. This chapter explores the various approaches to

mapping requirements into software system architectures.

3.1 Object-Oriented software development

Object-oriented software development is a development technique where a

system is considered in terms of "things" or "objects" as opposed to functions or

operations [10]. The system is built up by a combination of objects that interact

with one another and maintain their own state and allow operations to

manipulate that state. Access to information about state representation is

limiting in the concept of information hiding. An object-oriented system is

www.manaraa.com

designed by creating object classes and defining the relationship between some

or all of these classes. The objects are not actually written explicitly by they are

created dynamically from the class definitions.

An object oriented system is built from classes. These classes can be

instantiated numerous times in a system with different states. Each such

instantiation is called an instance. This instance is what we describe as an

object.

Object-oriented design has gained wide recognition as a cost-effective and fast

way to develop software. It cuts development time and overhead costs by

allowing the development of highly reusable and easy to maintain applications.

Inheritance is a key concept in object-oriented system design and is one of the

characteristics that make for greater code reuse. Inheritance allows classes to

inherit behavior from a super class. This prevents code duplication.

As mentioned earlier, one of the benefits of object-oriented development is

information hiding, commonly referred to as encapsulation. Encapsulation

involves grouping data with the procedures that operate on them. An interface is

then provided through which data can be accessed through various procedure

but without direct access to the data. The procedures should not reveal the

implementations used to manipulate the data.

One of the key benefits of the class definition is looser coupling. Using object-

oriented techniques it is possible to have highly cohesive applications which

still retain loose coupling. The benefits of this become clear when errors are

www.manaraa.com

identified. Because an object –oriented system is so loosely coupled it is very

easy to correct errors in one class without affecting the rest of the code in other

classes since each class has a specific task that is assigned to it.

Perhaps one understated benefit of object-oriented development is its simplicity.

The consideration of a system in terms of real world object increases the

comprehension and understanding of a problem and is inherently less prone to

mistakes.

3.1.1 The main features of Object-Oriented software development

Object oriented development can only be carried out using a fully object

oriented language or a language that at least supports object oriented

programming. Object oriented languages have all the features of other

languages but in addition to this they also support key features that distinguish

them.

Some of the key features of object oriented programming are:

1. Inheritance

2. Polymorphism

3. Data Hiding

4. Encapsulation

5. Reusability

www.manaraa.com

3.1.1.1 Inheritance

Inheritance involves the inheriting or deriving of qualities (properties) from an

existing class. The class from which these properties are derived is referred to as

the super class whilst the class which inherits is referred to as the subclass.

Inheritance becomes useful when we have a set of common features,

characteristics or behavior that might be needed in a number of classes. Instead

of writing these out in each and every class that they might appear they can be

written in one class and simply made use of in other classes that might have

need for them. This has a number of advantages which include reducing the

code size, making error correction and code extension easier (since only one

class needs to be changed). Inheritance also allow for reusability since code

written in only one place can be reused numerous times in a piece of software.

3.1.1.2 Polymorphism

Polymorphism refers to the ability to create a variable, method or object that has

more than one form. The underlying objective of polymorphism in object

oriented programming is the implementation of message-passing. In message-

passing object of differing type make use of a common interface. Users can then

programme onto that interface. This then gives objects from different types to

answer method and field calls of the same name but offering the appropriate

type-specific behavior.

www.manaraa.com

It is possible for these objects to be entirely unrelated but in practice, since there

is a common interface, they are often subclasses of one superclass. Though not

a requirement it is often expected that the different methods will produce similar

output.

3.1.1.3 Data Hiding & Encapsulation

Data hiding is at the core of object oriented development principles. Data is kept

hidden by declaring it as private inside a class. By declaring it as private it can

only be accessed by the class in which it was defined. Public data is accessible

in the whole application (outside the class). Data hiding is important because it

allows for better control in a system since data cannot be manipulated from any

part of the system without specifically accessing it from methods declared in

that class. This makes for easier to maintain applications.

Encapsulation simply refers to bundling data and methods that operate on that

data together. So though data might be private there could be a public method in

the same class that carries out operations on that data. The beauty of

encapsulation is that it allows a class set limitations on the type of operations

that can be performed on data which prevents many errors.

3.1.1.4 Reusability

Object oriented development lends itself to high reusability. Reusability is one

of the key reasons why it has gained widespread acceptance. The separation of

concerns in the development of a project allows the same piece of code to be

www.manaraa.com

reused numerous times in different places in the software and it also allows the

same classes to be used in entirely different projects where they can be useful.

3.1.2 Object-based mapping requirement approach

This section presents the, in quite a brief fashion, one of the earliest literature on

object-based mapping requirements (Software Development Process from

Natural Language Specification). The problem set is unique because the

challenge is not only to interpret, translate and map user requirements but to do

this in an object oriented fashion. In this we mean to consider raw requirements

in the natural language and to then map then into object oriented theme that is

immediately ready for implantation in an object oriented development

environment.

The foundation of the work by Saeki, Horai and Enomoto is the conviction that

the lexical and semantical structures of the words used in the informal natural

language raw requirements are similar to the software component in the system.

Their logic, it follows, is that we can therefore read informal requirements and

immediately map these into formal specifications or software components.

Their fairly extensive paper proposes “the process for constructing

incrementally formal specifications from their informal specifications written in

English.”

www.manaraa.com

It is already possible (at time of publication) to extract nouns and verbs from a

natural language specification document. The challenge is the inability of the

computer to determine which words of relevance and which ones are not. This

role is left to the developer to use human knowledge and an understanding of

the problem domain to determine which nouns and verbs are useful for

developing a formal specification.

An object oriented model is one in which the system is considered as being a set

of separate objects that communicate with one another. The objects also have

attributes which represent internal state.

The design activity proposed in this paper should produce the module design

document from an informal natural language raw requirements specification

document. This module design will have external design class specification

such as method names, class module names and message protocols; All this

being derived directly from natural language raw requirements.

The process of establishing a design module is quite straightforward:

Input product Extract Candidates (nouns and verbs) Select product items

out of candidates Output product [8]

In the first step nouns and verbs are selected using rules. This is followed by a

developer selecting words deemed relevant.

The following rules are used in the extraction and creation of candidates:

1) Verb table: this contains a list of information about verbs that have been

extracted e.g verb names, category, subjects etc

www.manaraa.com

2) Noun table: Details information about extracted nouns

3) Action table: Actions are extracted from items in the verb table.

4) Action relation table: Here the relationship between the various

determined actions are identified.

When determining the noun and verb table the general rule is that nouns and

verbs correspond to objects or class and to messages, respectively.

Because the natural language specifications that are used are not written in an

object oriented fashion there is needed for a more thorough analysis of nouns

and verbs. An interesting example is in the sentence “temperature of the room”.

In this instance temperature is an attribute of the room rather than an object in

itself. Nouns and verbs are categorised into various categories.

Noun and verbs in the natural language raw requirements are initially identified

using a noun and verb dictionary without parsing the text. It is also possible to

parse the text. However it is only this much that can be automated. You need a

human to select the key words and to classify.

In the action table we establish the agents and targets of all action verbs in a

sentence. Action verbs will cause changes of state in their target. To find these

you seek the objective words which will have their state changed.

www.manaraa.com

3.2 Behaviour Tree approach

A behavior tree is a graphical tree representation of the behavior of individual

or networks of entities which realise state, change states, make decisions, cause

and respond to events, and interact by exchanging information and passing

control [7], [8], [5].

The conventional strategy in software engineering is to use an underlying

design technique to construct a design that will satisfy a set of functional

requirements. However, behavior trees allow the construction of a design out of

its set of functional requirements.

The underlying and core conventions of component-state notations are are the

graphical forms for associating with a component a [state], ??Event??,

?Decision?, [Sub-cpt[State] or relation, or [Attribute := expression | State]. To

allow for traceability with the original requirements the tagging convention is

following numbering the tags R1, R2 and so on.

At times the requirements are not complete in the sense of explicitly stating a

requirement. These missing or implied requirements can be expressed with a

"+" in the tag. A "-" mark in a tag indicates behaviour that is missing in the

natural requirements.

The behaviour tree approach translates each raw requirement in the natural

language into behaviour trees. The behaviour tree is deceptively simple but it is

an incredibly powerful innovation that allows manageable mapping of raw

requirements. It is a graphical representation of the behaviour of sets of

www.manaraa.com

components. It recognises and depicts change of state, decisions, response to

events and control flow.

The behaviour trees for each individual requirement are then joined together to

form a design behaviour tree.

Figure 1: Daniel Powell: Requirements Evaluation Using Brhavior Trees- Finding from Industry

Behaviour trees provide a direct relationship between what is expressed in the

natural language and its equivalent in the behaviour tree. This relation is also

highly traceable.

Translating the requirements is the initial step in behavior tree requirements

mapping. As mentioned earlier each required is mapped into a decision tree

called a requirement behavior tree (RBT). During translation we identify,

www.manaraa.com

among other things, components, the states they realise, events, logical

dependencies. Because this is done on a requirement by requirement basis

complexity is easily managed.

When all the requirements have been mapped into RBT's they are integrated by

the precondition and interaction axioms. In practice this is simply identifying

where the component state root node of one behavior tree occurs in the rest of

the tree. Translation and integration can be done in any order.

A precondition axiom is always necessary in order to integrate requirements

with at least another member of the set of requirements. Precondition axiom is

necessary if we are to be able to attach each requirement to a cause (state or

event). Such a linking is necessary if the behavior tree is to be used to draw up

system architecture because the behavior tree is thus equipped with all the

details necessary for the construction of a system. These give us clues about

what additional information is needed to achieve integration.

Interaction Axiom - Each function requirement represented in a behavior tree

must have the preconditions it must satisfy in order to display its behavior set by

another behavior tree of at least one functional requirement that belongs to the

system.

Together, the precondition axiom and interaction axiom have an crucial position

is definition the interaction between a functional requirements. This allows the

design of a system right from the natural language specification by building

www.manaraa.com

behavior trees for each requirement and then move to integrate that set of

decision trees. Following this technique we find ourselves in a four phase

development process which involves

 1.) Requirements Translation

 2.) Requirements Integration

 3.) Component Architecture Transformation

 4.) Component Behavior Projection

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 4: Component-Based Software

Development

The foundational concept in component based systems is the separation of

concerns in respect to the various functionalities that are available in a piece of

software [7], [3]. This separation of concerns expresses itself in components. "A

software component is a software element that conforms to a component model,

and can be independently deployed and composed without modification

according to a composition standard." This use of component leads to faster

development as already existing components can be used rather than building

from scratch. It is difficult to imagine how developers can build components

that will later be used in systems that they had no consideration for at the time

of design. How can one be sure a component will work in their system? These

very real potential problems and questions are answered by Component Models.

Component Models are a sort of contract between the developers who work

within that model. Component Models define what a component is, the

framework within which they can be built, how they are assembled and how

they can be deployed. Following a specific Component Model developers can

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 4: Component-Based Software

Development

The foundational concept in component based systems is the separation of

concerns in respect to the various functionalities that are available in a piece of

software [7], [3]. This separation of concerns expresses itself in components. "A

software component is a software element that conforms to a component model,

and can be independently deployed and composed without modification

according to a composition standard." This use of component leads to faster

development as already existing components can be used rather than building

from scratch. It is difficult to imagine how developers can build components

that will later be used in systems that they had no consideration for at the time

of design. How can one be sure a component will work in their system? These

very real potential problems and questions are answered by Component Models.

Component Models are a sort of contract between the developers who work

within that model. Component Models define what a component is, the

framework within which they can be built, how they are assembled and how

they can be deployed. Following a specific Component Model developers can

www.manaraa.com

build components that can be used in other software as well as make use of

components already written in their own software development process.

4.1 Why Component-Based Software Development?

Component based development immediately becomes attractive when you

consider that most software have very similar underlying functionalities. Take a

web based service for example. Most of these services maintain a login system

of one form or the other. Instead of every web application developer coding

their own login system from scratch would they not be better served by simply

making use of a login component that has already built? It is this view of

reusability that gave birth to and indeed drives component based development.

Our example is limited to logins but could be extended to numerous examples

of functionality that is made use of across a spectrum of very different services.

In addition to this is the matter of complexity. Developing software from

prefabricated components that simply needed to be assembled in accordance

with a set protocol abstracts a great measure of complexity. The developer

simply needs to understand the Component Development Model, grasp that

inputs of the component he wishes to make use for and he can immediately

benefit from powerful computations may perhaps be outside his domain

expertise.

www.manaraa.com

These benefits in turn lead to additional benefits. Making use of component

dramatically reduces the development time since developers need not waste

time writing up code for components that are already existing in the repository.

Developers become much more productive when they can focus on actually

solving real problems and their time is devoted toward this endeavour. In

addition to this quality is improved when component are used. This is because a

component that is used by a large number of developers is under constant

improvement. Bugs are quickly identified and solved. Components can be

replaced in the repository and indeed in software that has already been

deployed.

4.2 What are Software Components?

Figure 2: A component abstraction

A software component is a unit of software that offers services and makes use

of other services [3]. The services that are provided are operations that are

carried out by the component whilst the required services are those services that

are needed by the component for it to be able to provide the services that it

offers.

www.manaraa.com

'"A software component is a unit of composition with contractually specified

interfaces and explicit context dependencies only. A software component can be

deployed independently and is subject to composition by third parties."Clemens

Szyperski, Component Software, ACM Press/Addison-Wesley, England, (1998).

A component will have an interface [3]. This includes the specification of the

services it provides and requires. This interface ideally points out reliance

(dependency) between the provided and required services. Sometime a

component can have more than one interface; these interfaces being for different

services.

In the object oriented case where we have components operating as objects the

methods provided by these objects operate as the provided services. It is not

possible for these objects to specify the services they require so they are often

hosted in an environment that which handles the interaction between

components.

Three of perhaps the most important characteristics of components is that they

hide their implementation. Components can be thought of as epitomising the

concept of black box abstraction. The developers who use the components have

a full understanding the output a component can provide but they have no idea

about how it actually accomplishes this. The second important characteristic is

Context Independence. This means that components can be transferred from one

application to the other. This is because components are by definition self

contained software elements. The third characteristic is Implicit Invocation.

www.manaraa.com

Since the components are exchangeable, components should not address one

another directly but work via an interface.

4.3 The main differences between Object Oriented Software development and

Component-Based Software Development

It is important to set a distinction between component and objects, the two are

often mixed up and confused. Although component based development borrows

a great amount from object oriented development techniques there are

fundamental differences between them. The major difference is the measure of

encapsulation [10]. Components are fully and totally encapsulated. There is no

access whatsoever to the internal workings of a component. Compare this with

object oriented development an understanding of the inner workings of an

object is very necessary, for example when inheriting from a class. In object

oriented programming the reuse is termed white box reuse since the source code

is open for insight. Contrast this with the black box abstraction is component

based development.

It is interesting to consider how component based systems and object oriented

systems are extended. The former relies on composition rather than inheritance

which is the foundation of object oriented systems.

Components have no persistent state whilst objects do. Because components

have no state they can only be loaded into a system once. It makes no sense to

speak of multiple components of the same in the same system because they

www.manaraa.com

perform the exact same task. Contrast this with objects that have particular state

and can be active in a system in multiple forms.

4.4 Component Models

"A component model specifies the standards and conventions that are needed to

enable the composition of independently developed components."

Component models are a very important concept in component based

development because they establish a contractually relationship between

developers on how components are defined, how they can be specified and how

to actually assembly them. There are a number of component models that have

been developed and are in use but most of them have considerable differences

in approach [3], [7]. In this section the aim is to classify some of the existing

component models. Because these models are so wide in their scope a thorough

examination of each model will not be possible.

The currently available component models include, but are not limited to,

AUTOSAR, BIP, BLUEArX, CCM, COM, COMDES II, CompoNETS, EJB,

Fractal, IEC 61499, JavaBeans, Koala, KobrA, OpenCOM, Palladio, PECOS,

Pin, ProCom, ROBOCOP, Rubus, SaveCCM, SOFA 2.0 [16].

4.5 The restriction and limitation of the Existing Software Component Models

Perhaps the greatest limitation of existing component models is the fact that

there are so many of them and there isn‟t a single accepted standard that would

allow for rapid and concentrated development within that one single model.

www.manaraa.com

This is unlike object oriented development which, perhaps by chance, gained

near unanimous support and is highly standardised. As it is an engineer who

decides to approach a problem using component model is first faced with the

difficult challenge of deciding which component model to make use of.

Looking closer at individual models one immediately notices a number of

distinct limitations that are manifest in existing component models. Software

components that are built within the Component Model frameworks often mix

control and computation. The computation would be any operations performed

by the component whilst control refers to the method calls made by a

component. We make special mention of control because when one component

calls the method of another control immediately moves away from that

component. This is an obvious dependency which is undesirable. Although

components seem to hold a great measure of specified operations in themselves

they remain tightly coupled. This dependency makes it difficult to reuse

components in other software systems since these dependencies would still need

to be satisfied.

When grouping components we make use of connectors. In current component

models these connectors encapsulate the communication between components.

This encapsulation hides away one of the problematic areas with existing

component models. If components are making calls to the methods of other

components it becomes increasingly difficult to make use of that component in

another software system without making significant changes to the structure.

www.manaraa.com

4.6 Exogenous Connectors Component Model (XMAN)

The Exogenous Connectors Component Model is different because it makes use

of exogenous connectors in the connections of all the software components [7].

The main difference between these connectors and those used in existing

component models is because it is in these connectors that all the control is

performed and handled. Components do not call any methods on other

components. Instead it is the connectors that call methods on different

components thereby freeing individual components of any dependencies.

Exogenous connectors allows for very loose coupling which is a desirable

benefit. The fact that components not call methods on any other component

directly means that these components can be easily reused in other projects that

are entirely different.

The XMAN component model has two component type; atomic component and

composite component. An atomic component is a component that is singular in

nature. It is not built up from other components. This is the smallest

construction that can be found in a system that is built using the XMAN

component model and it consists of a computation unit and an invocation

connector. The computation unit abstracts all the computation and information

associated with the component. It also offers methods held by the component

and thus consist of a number of method objects. Computation Units do not

invoke any operations outside themselves. The role of invoking methods outside

a component is given to the interface which is the invocation connector. The

www.manaraa.com

only way the method encapsulated in the computation unit can be access is via

the invocation connectors.

After the atomic component we have the composite component which is built

up of two or more components. The composite component can be built up of

more either atomic or composite components. These are the components that are

utilised in building the higher level structures XMAN component model.

In a composite component you can find many components each of which have

their own methods defined inside them. A composite method definition allows

specification the order in which subcomponent methods should be executed.

This allows connectors to know the order in which methods which should be

executed so that the necessary input parameters are given.

Composition connectors are the exogenous connectors that abstract method call

control. There a three types of exogenous connectors that can be used on

composite components: SEQUENCER, PIPE AND SELECTOR. The sequencer

invokes subcomponent methods in sequence. Pipe connectors work in the exact

www.manaraa.com

same way as the sequencer in the sense that it invokes the methods of a

subcomponent but it also makes use of the subcomponent output as the input to

the next subcomponent. As the name suggests, the selector connectors works by

selecting which subcomponent method to execute. The determination of which

subcomponent method is made evaluating boolean expressions.

4.7 Exogenous Connectors Component Model Tool

The Exogenous Connectors Component Model is built on the Generic

Modelling Environment (GME). The GME allows the creation of application

models. Because it can be configured clients can define metamodels and make

use of these metamodels in creating implementations for particular domains.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 5: Component-Based Mapping

Requirements Approach

The objective of this project, as stated before, is to define a systematic approach

to map raw requirements expressed in natural language to component-based

software architecture. As shown in figure 3 this approach has been defined

through four phases. The first phase involves the analysis the natural language

requirements into key words and then assigns these key words to parts of speech

such as noun, verb or phrase. The key words resulting from this analysis are

assigned to elements that relate to the XMAN component model. The second

phase is the extraction of the semantic conceptual elements of the XMAN

component model which are the component, computation and control, in order

to prepare to build the partial architecture. The second phase is named the

component analysis phase because it analyses the raw requirement to

components and displays the computations that are produced by these

components. The third phase involves the design of these components in the

design phase of the XMAN component model; if the component is already in

the repository this phase is skipped. The final phase involves retrieving the

component from the repository and then composing it to the partial architecture

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 5: Component-Based Mapping

Requirements Approach

The objective of this project, as stated before, is to define a systematic approach

to map raw requirements expressed in natural language to component-based

software architecture. As shown in figure 3 this approach has been defined

through four phases. The first phase involves the analysis the natural language

requirements into key words and then assigns these key words to parts of speech

such as noun, verb or phrase. The key words resulting from this analysis are

assigned to elements that relate to the XMAN component model. The second

phase is the extraction of the semantic conceptual elements of the XMAN

component model which are the component, computation and control, in order

to prepare to build the partial architecture. The second phase is named the

component analysis phase because it analyses the raw requirement to

components and displays the computations that are produced by these

components. The third phase involves the design of these components in the

design phase of the XMAN component model; if the component is already in

the repository this phase is skipped. The final phase involves retrieving the

component from the repository and then composing it to the partial architecture

www.manaraa.com

of the system. The final phase is processed in the deployment phase of the

XMAN component model because it supports the incremental composition.

Figure 3: Component Based mapping requirement approach structure

5.1 PHASE 1: Requirement Analysis

The requirement Analysis can be considered as the initial phase in this

approach. In this phase, the requirement is taken from natural language

expression and analysed into its parts of speech, which is then assigned to the

possible conceptual elements of X-MAN component model. Each part of speech

www.manaraa.com

is mapped to X-MAN conceptual element according to specific rules [17]; these

rules will be explained clearly in this chapter. The outcome of this phase is the

requirement analysis table shown in Table. 1.

The requirements of the Home Heating System Controller [HHSC] will be used

as an example to demonstrate this approach. This example has been taken from

requirement analysis project done by a group of students [19]. (See appendix A)

The encapsulation feature of XMAN component model enables working on the

requirements one by one. The main advantage of processing one raw

requirement at a time is the flexibility which is missed in the usual practice of

analysing all requirements together. Moreover, this procedure of processing the

raw requirements enables dealing with any number of requirements [17].

In this phase, each requirement passes through three steps presented below:

1) The POS Tagger is applied on the raw requirement to parse it to key words

which assigned to parts of speech such as verbs, nouns and phrases [18].

2) The output of the POS Tagger is examined based on three tables, verbs table,

noun table and phrases table. These tables are used as a reference of the

mapping process (see table1, 2 and 3). If the part of speech that assigned to the

key word is verb then we return this key word to the verb table to find out its

www.manaraa.com

category and the aspect of XMAN component model that could denotes, the

same is done with the noun and the phrases.

If the part of speech that assigned to the key word, that extracted from the

requirement, is verb then it could be one of three types; Computation, State and

Event verb [17]. Computation verbs are the verbs that represent a data

transformation, which processes some actions on the inputs data in order to

produce the desired output data and achieve specific behaviour [17].This type of

verbs is extracted from Action [5],[4]. Count, Calculate and analyse are some

examples of computation verbs. The second type is state verb, which is

extracted from State [5], [4].State verbs denotes computations that realise states

[17], this type of computation results changes in the components attributes.

Keep, remain and maintain are some examples of state verbs[17]. Finally, event

verbs which denote event that triggers the computation[17]. Event verbs are

extracted from Emergence [4]. Signal, reach and press are some examples of

event verbs. Table 1 summarises the information that could be extracted from

verbs [17].

Table 1: Verb Table

Category of verbs Denotes Example

Computation Computation

(data transformation)

withdraw, deposit,

cooking

State Internal state of component

(attribute value of component)

Keep, remain

Event Events

(that can trigger computation)

press,cancel,push

www.manaraa.com

If the key word is noun, it is transferred to the noun table. There are four types

of nouns; conceptual component, data, state and computation noun [17]. The

abstraction of the candidate component can be specified from the conceptual

component noun such as word counter, auto-teller machine, etc [17].

Conceptual component can be extracted from Class [17], [5]. The second type

of noun is data noun, which denotes values that may have to be stored or

retrieved; data noun is extracted from Value [17], [5]. State noun is another type

of noun which denotes attributes, identification and states [17]. Closed and

opened are examples of state nouns. State noun is extracted from attribute [5].

Finally, computation noun such as authentication refers to data transformation

processes. In other word, the computation of the component can be extracted

from the computation noun. Table 2 shows the information that can be extracted

from noun [17].

Table 2: Noun Table

Category of noun Denotes Example

Conceptual

component

Conceptual hooks for

components

Power tube

Word counter

Data Value or set of values 1,c,integer

State Attribute name and state closed, open

Computation Computation

(data transformation)

registration,

transmission,

movement

www.manaraa.com

Furthermore, there are four aspects can be driven from phrases. First, the

component and/or computation which are extracted from descriptive expression

phrases such as a graduate student and the pin is incorrect [17]. The descriptive

expression is implemented from descriptive expression [4], [17]. Secondly,

predicate methods of the computation unit which extracted from predicate

phrases such as is valid and is normal [4], [17]. Third, the control structure

phrase which is adapted from English control structure [4] and denotes flow of

control [17]. Once, until, if…then…else and while are some examples of

control structure phrases. Table 3 summarize the elements that could be

extracted from phrases [17].

Table 3: Phrase Table

3) The analysis process, which is performed on the requirement, is summarized

on a table called the Requirements Analysis Table. This step recapitulates the

output of the requirement analysis in one table that make it easy to filter this

Category of phrase Denotes Example

Descriptive

expression

Denotes components or

computation

The earlier date

May denote date or compare date

function

Predicate Computation – true or

false methods

Is enabled, is valid

Control structure Control flow If, then, else

While

www.manaraa.com

information and transfer it to the next phase to determine the candidate

components which extracted from this requirement and its computation.

The requirement Analysis Table contains three columns. The first column

contains the key word or the part of the requirement which could be verb, noun

or phrase. The second column contains this part type. The last column displays

what it could denote. Figure 4 presents the steps of the requirement analysis

phase.

Figure 4: The steps of Requirement Analysis Phase

www.manaraa.com

5.2 PHASE 2: Components Analysis

In this phase four main factors are determined; candidate components and their

type, computation and data. This information is summarised based on the

previous phase.

5.2.1 Candidate Components

The candidate components are extracted directly from the conceptual

component noun or the descriptive expression phrases. For example, (Water

Pump Motor) in the requirement analysis table of R1.1 Table 9, which will be

presented later in this chapter is stated as a conceptual component therefore it

provides a candidate component possibility [17]. In some cases the conceptual

component noun refers to the control of the system. For instance, in R1.1 the

HHSC is abbreviation of home heating system controller which is settled as a

conceptual component noun in the requirement analysis table but it is actually

refers to the control of the system.

In addition, the descriptive expression can be an inspiration for the candidate

components [17]. For instance, the primary water circulation valve is a

descriptive expression that denotes candidate component.

www.manaraa.com

5.2.2 Candidates Components’ type

The type of candidate component is determined in this phase. As we presented

in chapter four the components in the XMAN component model can be divided

in to tow types; atomic component and composite component. The type of

component can be extracted from the context of requirements. For example, if

we looked at the requirements of the home heating system controller figure 5,

we will find that requirement 3.1 gives an abstraction of the furnace's activation

process. However, the explanation of this process is expanded in requirements

(3.1.1 – 3.1.4). That means the requirement 3.1 represents a composite

component while the requirements (3.1.1 – 3.1.4) represent the atomic

components that construct the composite component.

3.1 The HHSC will activate the furnace.

3.1.1 The HHSC will signal the water pump motor to

start.

3.1.2 Once motor speed reaches 1000 rpm, the HHSC will

signal the ignition device to be activated and oil valve to

be opened.

3.1.3 Once the system water temperature reaches a value

predefined by the user, the HHSC will signal the primary

water circulation valve to be opened.

3.1.4 The HHSC will retain the length of time from the

last deactivation and not reactivate the furnace until a

period of 5 minutes has elapsed.

Figure 5: The Requirements of Furnace Activation Process

www.manaraa.com

5.2.3 Candidate’s Computation of a component

As we mentioned in chapter four, the computation and control can be

considered as the key semantic concepts of XMAN component model. Each

component has its own computation unit. The Computation represents the

transformation that is made on data or by other word function evaluation which

could result in some updates in variables. On the other hand, control represents

the flow of execution of computations' pieces. “The result of a piece of control

invoking a computation is a piece of behaviour”. [17]

In this phase the computation of the component is determined and the code is

prepared. The computation can be extracted directly from action noun such as

authentication or data transformation verbs such as withdraw [17], [8]. State

verbs such as keep and remain, and events verbs such as select can also denote

the computation directly [17], [8]. However, the computation can be denoted

implicitly in the descriptive expression such as to be activated [17], [8]. The

computation of functions that return true or false is extracted from predicate

phrases such as has elapsed, is normal and is green[17], [8]. Table 4 summarize

the key words that denote computation [8].

www.manaraa.com

Table 4: Computation Extraction

Part of speech Category Denotes Example

Verbs

Data Transformation Computation

(data transformation)

Change Price

State Internal state of components

(attribute values of component)

Keep, remain

Event Events that can trigger computation Press, enter, select

Noun Action Computation (Data transformation) Identifier, validation

Phrases Descriptive

expression

Denotes computation implicitly Is displayed

Predicate Computation

 (functions that return true or false)

Is normal , is green

The information that is resulted from this phase is summarized in the

component analysis table. This table contains the candidate components that are

extracted from the requirement and its type wither atomic or composite

component and the last field is the computation that performed by this

component. After this phase the component is ready to be designed and

composed to the system architecture in the coming phases of this approach.

Table 10, show an example of component analysis table which performed on

requirement R.1.1 of the home heating system.

www.manaraa.com

5.3 PHASE 3: Components design.

In phase 1 and 2 the information that is needed to design the components that

are extracted from the requirement is prepared. In this phase the components are

designed if they are not already in the repository.

5.3.1 Designing component steps

There are two main types of component as we mentioned previously; an atomic

component and Composite Component. The atomic component consists of

computation unit, invocation connector and interface. The component

encapsulates the computation by having a set of methods in the computation

unit that do not need to invoke methods in the computation units of other

components. On the other hand, the role of the invocation connector is passing

the control and the input parameters, which come from other components to the

computation unit of the component in order to invoke a specific method, and

return the control with the results to the place that it came from, that is the

meaning of encapsulating the control.

 Composite components are made from joining together any number of atomic

components through the use of a composition connector. The composition fully

encapsulates the components control structure such that branching and looping

and other control structures that allow the connection of the sub-components are

www.manaraa.com

completely hidden. Composite components encapsulate computation in the

same way as atomic components.

In this project the XMAN tool will be used to show how to use the information

that is extracted from the raw requirement and prepared in phase 1 and 2, to

build the component based architecture. Each requirement is mapped into one or

more components which are displayed clearly in the components analysis table

from phase 2. The XMAN tool allows designing the components in the design

phase and linking these components with current architecture in an incremental

fashion in the deployment phase. This section will explain the steps of

designing the component and deposit it into the repository.

1) Search for the components in the repository

The first step of phase 3 is searching for the components in the repository. If

this component is already in the repository the component design phase will be

skipped, otherwise the component will be design as in step 2.

For the first requirement the initial system architecture is created in the

deployment phase. This architecture is empty by default. Figure 6 shows the

initial architecture of the Home Heating System Controller.

www.manaraa.com

Figure 6: The initial architecture of HHSC system

To find a component we should press the retrieve button which opens the

component retrieval Dialog. After that, we type the component name which

stated in the component analysis table, in the search string text box in the

component retrieval Dialog. If the component already exists in the repository it

will be shown in the component retrieval Dialog as shown in figure 7.

Figure 7: exist components in the repository

www.manaraa.com

On the Other hand, if we search for non-existent component, the component

retrieval dialog will show the repository box empty as in figure 8.

Figure 8: search for non-existent component

2) Design the components

If the component does not exist in the repository we should design it and store it

in the repository. In this phase the component is designed in the design phase of

the XMAN component model.

2.1) Select the XMAN_Design paradigm

from the listed paradigm and create a

project file to the component design.

 Figure 9: Paradigm selected in component design

phase.

www.manaraa.com

2.2) create the file that contains the design.

An empty project associated with “XMAN_Design” paradigm has been created

by the GME. The project is not actually empty it contains a root folder which

named "RootFolder".

2.3) Insert the design model by clicking the right click on the root folder then

insert a “NewDesign”. To distinguish the design model of a component it is

better to rename it by the component's name.

2.4) after creating the design model the part browser will displays the two types

of component to select from; The Atomic Component, and Composite

Component. The component‟s type has been determined from phase 2 in the

component‟s analysis table.

www.manaraa.com

The part browser shows the aspects of the selected component type. If the

atomic component is selected, the aspects that are presented in the part browser

are the invocation connector which should be connected to the computation unit

and the interface.

Figure 10: The aspects that construct the atomic component

2.4.1) the computation unit is inserted and named. After that the behaviour of

the component is implemented in the property executable code part. This code

has been prepared in the component analysis table from phase 2.

2.4.2) the provided behaviour needs to be modelled as shown in appendix A.

2.4.3) the invocation connector is inserted and linked to the computation unit

via a non sticky connect mode.

2.4.4) the component‟s interface is generated by the IGN- component interface

generator - button in the tool bar.

www.manaraa.com

2.5) the component is deposited in the repository to be saved until the system

architecture is built.

5.4 PHASE 4: System architecture building:

The system architecture in the component based software development is built

by composing components. The component analysis table is used to organize

the components that build the partial architecture of the requirement. That

means each requirement has its own partial architecture. The partial architecture

is composed with the system architecture incrementally. In this section the

incremental composition is discussed briefly.

5.4.1 Incremental Composition

XMAN Component model is unique and effective because composition

corresponds to actual system architecture unlike the other mapping approach

which maps the requirement to intermediate model such as use cases.

Incremental composition is defined as (i) allowing the addition components and

compositions to an existing architecture; and (ii) preserving the properties of the

existing architecture whilst incrementing on that architecture. Because it

preserves the existing architectures and simply adds and compliments it, the

XMAN component model is an effective technique for mapping requirements.

Requirements can be confronted one by one without the concern that a

www.manaraa.com

requirement in the later parts could disrupt the entire architecture. The

requirements are mapped into the partial architecture by adding components and

compositions. [17]

The mapping process beings without an architecture, as components are added a

partial architecture begins to develop and as we add additional components and

compositions to that architecture this is incremental. The partial architecture

satisfies at least one of the requirements. [17]

The partial architecture is incremented as we add new components that satisfy a

new requirement. The components we add to the partial architecture will satisfy

new requirements but will not affect the partial architecture because of the

behaviour preservation that is characteristic of the XMAN component model.

The system architecture is completed when all the requirements have been

satisfied by the incremental adding of components to the partial architecture.

[17]

The steps of building the partial architecture of the components that extracted

from raw requirement is listed below.

4.1) Select the XMAN_Deployment paradigm from the listed paradigm and

create a project file to the component design.

www.manaraa.com

Figure 11: The Paradigm selected in the architecture building phase

4.2) create the file that contains the system.

An empty project associated with “XMAN_Deployment” paradigm has been

created by the GME. The project is not actually empty it contains a root folder

which named "RootFolder". Insert the system model by clicking the right click

on the root folder then insert a “New system”.

www.manaraa.com

4.3) the components that correspond to build the partial architecture,which

determined in the component analysis table, are retrieved and composed by one

of the composite connectors which are listed in the part browser(Pipe-Selector-

Sequencer). These connectors also used to compose the new partial architecture

with the existing architecture.

Figure 12: Composition Connectors

These steps are repeated for each partial architecture that corresponds to one

requirement until all requirements are satisfied.

www.manaraa.com

5.5 complete example

We will use a part of the heating home system controller [hhsc] functional

requirements as an example to show procedure of this approach. The functional

requirements of this part are listed below:

R.1 The HHSC will activate the furnace.

R.1.1 TheHHSC will signal the water pump motor to start.

R.1.2 Once motor speed reaches 1000 rpm, the HHSC will signal the ignition

device to be activated and oil valve to be opened.

R.1.3 Once the system water temperature reaches a value predefined by the

user, the HHSC will signal the primary water circulation valve to be opened.

R.1.4 TheHHSC will retain the length of time from the last deactivation and not

reactivate the furnace until a period of 5 minutes has elapsed.

5.5.1 REQUIREMENT R.1

PHASE 1: Requirement Analysis

The raw requirement is sent firstly to the requirement analysis and the steps of

this phase are applied as followed in order to produce the requirement analysis

table.

1- The requirement is send to the POS Tagger to divide it into; verbs, nouns

and phrases.

www.manaraa.com

Table 5: POS Tagger result of R.1

2- The output of step 1 is analysed based on the 3 tables; the verb table,

noun table and phrases table. Firstly, The HHSC is conceptual component

noun. Secondly, activate is data transformation verb and it denotes

computation. Finally, the Furnace is conceptual component noun, it

denotes candidate component.

3- The information in step 2 is summarised in the requirement analyser table

of R.1.

Table 6: the requirement analysis table of R.1

Keyword Type Denotes

The HHSC conceptual component

noun

Candidate component

Activate Computation verb Computation

The Furnace conceptual component

noun

Candidate component

PHAE 2: the Component Analysis

Filtering the information produced in phase one shows that:

The Candidate component that extracted from R.1 is Furnace Activator. This

component is composite component therefore its computation cannot be

extracted directly from one raw requirement.

R.1 The HHSC will

activate the furnace.

The HHSC Noun

Activate Verb

the furnace Noun

www.manaraa.com

Table 7: Component Analysis Table of R.1

Candidate Components Type Computation

Furnace Activator Composite

Component

Activate The Furnace through

composing the atomic components

expressed in the coming requirements

PHASE 3: the Components design.

To design the components listed in the components analysis table the XMAN

tool is run.

1- Search for the Furnace Activator (FA) component in the repository.

The (FA) component does not exist. So it needs to be designed.

2- The (FA) component type is composite component (see component

analysis table of R.1 (Table 7)). Therefore, a composite component

selected from the part browser and renamed by the component name

which is (FA). As shown in fig X.

www.manaraa.com

The third and fourth phases of this requirement will be skipped because the

XMAN tool is under developing tool and it still does not support designing the

composite component. The requirements (R1.1-R1.4) will be processed as

individual requirements, not related to R.1, to demonstrate the incremental

composition in the deployment phase.

5.5.2 REQUIREMENT R1.1

PHASE 1: the Requirement Analysis

1- POS Tagger Result.

Table 8: POS Tagger result of R1.1

R1.1. The HHSC will

signal the water pump

motor to start.

The HHSC Noun

Signal Verb

the water pump motor Noun

Start Verb

www.manaraa.com

2- Sending the POS Tagger result to the verbs, nouns and phrases

tables.

We can see that the HHSC noun refer to the system control. Moreover, by

returning to the verbs table (Table 1) we can find that signal and start are

event verbs that trigger computation. On the other hand, the water pump

motor is a conceptual component noun which could refer to the candidate

component extracted from this requirement. These information

summarized bellow in the Requirement Analysis Table.

Table 9: Requirement Analysis Table of R1.1

PHASE 2: the Components analysis.

1- The candidate Components

From Table 9: the requirement analysis table of R.1.1 we can see that we

have two conceptual component nouns. The first is the HHSC which is

the abbreviation of Home heating system controller. As it obvious this

noun refers to the system control so we can not use it as a candidate

component. However, the water pump motor is the second conceptual

Key Words Type Denotes

The HHSC Conceptual component noun Candidate component

Signal Event verb Events trigger

computation

The Water pump motor Conceptual component noun Candidate component

Start Event verb Computation

www.manaraa.com

component noun in R1.1 which can be used as the candidate component

extracted from this requirement.

2- Components’ types

The WPM component is an atomic component because we can build it by

itself. By other word, WPM component does not need other components

to be constructed.

3- Computation

The requirement analysis table of R.1.1 shows that we have two verbs

signal and start. Both of these verbs are event verbs which denote events

that trigger computation. The computation that is triggered by these verbs

is pumping. Pumping computation means increasing the motor speed in

order to pump water.

The code of the computation is prepared and written with C programming

language which is the language that supported by the XMAN Tool.

Table 10: Component Analysis Table of R1.1

Candidate Components Type Computation

Water Pump Motor

(WPM)

Atomic

Component

void waterPumping(intCMD,int& MS)

{

if(CMD == 1)

MS++;

}

www.manaraa.com

PHASE 3: the Components design phase.

Figure 13: WPM component design

Before depositing the component into the repository we have to check in all

requirements to see whether all information related to this component has been

designed or not because depositing the component into the repository prevent

the ability of modification on the component design. We can find some

computation divided through more than one requirement on the other hand,

some requirements contain more than one computation.

For WPM component the first part of the next requirement (R.1.2) is related to

this component because it defines the condition that stop pumping computation.

www.manaraa.com

5.5.2 Modifications made on the component extracted from R1.1

PHASE 1: the Requirement Analysis.

1- POS Tagger Result.

Firstly, the first part of R1.2 will send to the POS tagger.

Table 11: POS Tagger result of R.1.2 (P1)

1- Sending the POS Tagger result to the verbs, nouns and phrases

tables.

2- (Once) is a phrase denotesthe flow of control. In addition, (motor speed)

is a conceptual component that denotes attribute name. On the other hand,

(reaches) is an event verb that triggers computation. Moreover, (1000

rpm) is data noun which denotes the value that needs to be used in the

condition.

Table 12: Requirement Analysis table of R1.2 (P1)

R.1.2 (first part)once

motor speed reaches 1000

rpm

Once Phrase

motor speed Noun

Reaches Verb

1000 rpm Noun

Key words Type Denotes

Once Control structure Phrase Flow of control

motor speed Conceptual component Noun Attribute name

Reaches Event Verb Events trigger

computation

1000 rpm Data Noun Value

www.manaraa.com

PHASE 2: the Components’ analysis.

1- The candidate Components

As we mentioned before, this part of requirement R1.2 is related to the

water pump motor component which extracted from R1.1.

2- Components’ types

The WPM component is an atomic component because we can build it by

itself. By other word, WPM component does not need other components

to be constructed.

3- Computation

The modification is been done on the computation part of the component

by adding for loop that stops this computation when the motor speed (ms)

reach 1000.

Table 13: Component Analysis Table of R.1.1 + R.1.2 (P1)

Candidate Components Type Computation

Water Pump Motor

(WPM)

Atomic

Component

void waterPumping(intCMD,int& MS)

{

if(CMD == 1)

for(inti=0; MS<=1000 ;i++)

{

MS++;

}

}

www.manaraa.com

PHASE 3: the Components design.

Figure 14: WPM component modified design

The WPM component is ready now to be deposited to the repository.

PHASE 4: The architecture building

Firstly, a project file that will contain the system architecture is created and the

system model is inserted. The WPM component is retrieved and instantiated as

the first partial architecture because it is the only component corresponds to

R.1.1 and R.1.2.

www.manaraa.com

5.5.3 REQUIREMENT R.1.2 (P2):

PHASE1: the Requirement Analysis

2- POS Tagger Result.

 The second part of R1.2 will send to the POS tagger.

Table 14: POS Tagger result of R1.2 (P2)

3- Sending the POS Tagger result to the verbs, nouns and phrases

tables.

R.1.2 (P2) the HHSC will

signal the ignition device

to be activated and oil

valve to be opened.

the HHSC Noun

Signal verb

the ignition device Noun

Activated Noun

oil valve Noun

Opened Noun

Figure 15: The first partial architecture

www.manaraa.com

Table 15: Requirement Analysis Table of R.1.2 (P2)

PHASE 2: the Components analysis

4- The candidate Components

The candidate components extracted from R1.2 (P2) are the ignition

device (ID) and oil valve.

5- Components’ types

The ignition device (ID) and oil valve (OV) are atomic components.

6- Computation

As we can see from the requirement analysis table of R.1.2(P2)the key

word that corresponding to the computation is signal which is a event

verb that trigger a computation.

The computation that triggered by this verb is changing the state of the

components.This computation is inspired from the state noun key words

which are activated and opened.

Key words Type Denotes

the HHSC Conceptual component noun Candidate component

Signal Event verb Events trigger

computation

the ignition device Conceptual component noun Candidate component

Activated State noun Internal state of

component (Attributes

values of component)

oil valve Conceptual component noun Candidate component

Opened State noun Internal state of

component (Attributes

values of component)

www.manaraa.com

Table 16: Component Analysis Table of R.1.2 (P2)

Candidate Components Type Computation

the ignition device(ID) Atomic

component

intsetIDState(intcmd, int&IDstate)

{

if(cmd==1)

IDstate=1;

else

if(cmd==0)

IDstate=0;

}

Oil Valve (OV) Atomic

Component

void setOVstate(int CMD , int&

OVSTATE)

{

if(CMD == 1)

OVstate=1; //opened

else

if(CMD == 0)

OVSTATE = 0; //closed

}

www.manaraa.com

PHASE 3: the Components design

(The ignition device (ID))

Figure 16: ID component design

(The Oil Valve (OV))

Figure 17: OV component Design

The ID and OV components are deposited into the repository to be ready to

build the second partial architecture which derived from R1.2 (P2).

www.manaraa.com

PHASE 4: The architecture building

The Components that are listed in the component analysis table of R.1.2 (P2)

are retrived and composied with composite connectors in order to build the

partial architecture of this requirenment.

Figure 18: The second partial architecture

The new partial architecture is composed with the previous one via the

composite connectors.

www.manaraa.com

Figure 19: linking the second partial architecture with the current architecture of the system

5.5.4 REQUIREMENT R.1.3

PHASE 1: the Requirement Analysis

3- POS Tagger Result.

Table 17: The POS Tagger result of R1.3

R1.3: Once the system

water temperature

reaches a value

predefined by the

user, the HHSC will

signal the primary

water circulation

valve to be opened.

Once Phrase

The system water

temperature

Noun

Reaches Verb

a value predefined by

the user

Phrases

the HHSC Noun

signal Verb

the primary water

circulation valve

Noun

to be opened. Verb

www.manaraa.com

4- Sending the POS Tagger result to the verbs, nouns and phrases

tables.

Table 18: The requirement Analysis Table of R.1.3

PHASE 2: the Components analysis

The candidate Components

The candidate components extracted from R1.3 are the system water

temperature (SWT) and the primary water circulation valve (PWCV).

Components’ types

The system water temperature (SWT) and the primary water circulation

valve (PWCV).are atomic components.

Key Words Type Denotes

Once Control Structure

phrase

Control

The system water

temperature

Conceptual component Candidate component

Reaches Event verb Event that trigger

computation

a value predefined by the

user

Data noun Value

the HHSC Descriptive expression Computation

Signal Event verb Event

the primary water

circulation valve

Conceptual component Candidate component

to be opened.

State verb Attribute

www.manaraa.com

Table 19: Component Analysis Table of R.1.3

Candidate

Components

Type Computation

The system water

temperature (SWT)

Atomic

component

void measure(int TEMP, int WTEMP, int SIGNAL)

{

if (WTEMP == TEMP)

SIGNAL = 1;

else

SIGNAL = 0;

}

the primary water

circulation valve

(PWCV).

Atomic

Component

voidsetOVstate(int CMD , int& OVSTATE)

{

if(CMD == 1)

OVstate=1; //opened

else

if(CMD == 0)

OVSTATE = 0; //closed

}

PHASE 3: the Components design

Figure 20: SWT component Design

www.manaraa.com

PHASE 4: The architecture building

Figure 21: The Partial architecture from R.1.3

Figure 22: The final system Architecture

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 6: Conclusion

This chapter gives an overview of the component based mapping requirements

approach and investigates whether the outlined objectives of this approach have

been successfully met. The limitations, challenges and future possibilities will

be also be explored in brief detail.

6.1 Accomplishments

This project has defined a systematic approach for mapping raw requirements

expressed in natural language to a component-based architecture through four

phases. The systems are directly constructed from the raw requirements based

on the XMAN component model. There are a number of factors that make the

XMAN component model ideal for the mapping process:

1- The reusability.

We have seen that a component can be mentioned numerous times in the raw

requirements of a system. Reusability is one of the most important features of

component-based software development and the XMAN component model is

one of these models. In this approach we search for the component in the

repository, if it does not exist then we design it. If a raw requirement contains a

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Chapter 6: Conclusion

This chapter gives an overview of the component based mapping requirements

approach and investigates whether the outlined objectives of this approach have

been successfully met. The limitations, challenges and future possibilities will

be also be explored in brief detail.

6.1 Accomplishments

This project has defined a systematic approach for mapping raw requirements

expressed in natural language to a component-based architecture through four

phases. The systems are directly constructed from the raw requirements based

on the XMAN component model. There are a number of factors that make the

XMAN component model ideal for the mapping process:

1- The reusability.

We have seen that a component can be mentioned numerous times in the raw

requirements of a system. Reusability is one of the most important features of

component-based software development and the XMAN component model is

one of these models. In this approach we search for the component in the

repository, if it does not exist then we design it. If a raw requirement contains a

www.manaraa.com

component that was mentioned in a previous requirement we simply retrieve it

and add it appropriately to the partial architecture.

2- The XMAN Component model enables incremental system construction.

As stated previously, unlike the behaviour tree approach which enables

constructing the behaviour trees incrementally from the raw requirements, the

XMAN component model allows incremental construction of the actual system

from the raw requirements.

3- Encapsulation of computation and control.

The encapsulation offered by the XMAN component model guarantees that

each component which is extracted from the new requirement and added to the

partial architecture will not alter the behaviour of the architecture.

The objectives of this project have been met and proved by applying this

approach on the heating home system controller example. Some restrictions and

limitations have been identified during the application of this process. These

limitations and challenges will be discussed in the next section.

www.manaraa.com

6.2 Limitation and Challenges

Although a systematic approach for mapping raw requirements to a component-

based architecture is defined and all requirements have been satisfied, a number

of limitations and challenges have been encountered. Firstly, an automated tool

that edits and analyses the requirements and then provides the extracted

information to the XMAN tool needs to be implemented. The limited time

available for the project did not allow for such an implementation. However,it

should also be noted that this approach still needs human knowledge and

intervention in the selection of appropriate components and in coding the

component‟s behaviour (computation). The defined rules in this approach make

the mapping process more systematic and clear. Another challenge that was

encountered in this approach was the lack of recourses about the XMAN tool

because it is a relatively new component model.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Abstract

The success of any software system is evaluated by measuring the degree of

achieving the requirements detailed in the natural language raw requirements

which is provided by the customer. In software development, the software

system developmentprocess always starts from requirements specifications

which are defined manually from the raw requirements which are expressed in

natural language. This process is performed based on the human knowledge of

the considered problem set and ingenuity in understanding how available tools

can solve the expressed problem. Therefore, the requirements specification and

other intermediate models only give an approximation of the raw requirements

depending on the skills of the developer mapping the system specification from

the raw user requirements in natural language. This project attempts to define an

approach that maps raw requirements directly into component based

architecture by using a component based model which supports incremental

composition. Each stated requirement will be immediately mapped into

executable components that build a partial architecture which compose to the

system architecture. The aim is to bring about greater congruence between the

raw requirements given by the customer in natural language and the software

system which is eventually developed.

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Abstract

The success of any software system is evaluated by measuring the degree of

achieving the requirements detailed in the natural language raw requirements

which is provided by the customer. In software development, the software

system developmentprocess always starts from requirements specifications

which are defined manually from the raw requirements which are expressed in

natural language. This process is performed based on the human knowledge of

the considered problem set and ingenuity in understanding how available tools

can solve the expressed problem. Therefore, the requirements specification and

other intermediate models only give an approximation of the raw requirements

depending on the skills of the developer mapping the system specification from

the raw user requirements in natural language. This project attempts to define an

approach that maps raw requirements directly into component based

architecture by using a component based model which supports incremental

composition. Each stated requirement will be immediately mapped into

executable components that build a partial architecture which compose to the

system architecture. The aim is to bring about greater congruence between the

raw requirements given by the customer in natural language and the software

system which is eventually developed.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Table of Contents
Abstract .. 6

Declaration ... 7

Copyright .. 8

Acknowledgments .. 10

Chapter 1: Introduction ... 11

Chapter 2: Software System’s requirements ... 15

2.2 Requirements Types ... 18

2.2.1 Architectural Requirements: .. 18

2.2.2 Functional Requirements ... 19

2.2.3 Non-Functional Requirements ... 20

2.2.4 Constraint Requirements ... 21

2.3 Attributes of Good Requirements ... 21

2.4 Requirements analysis and software design.. 23

Chapter 3: Mapping requirements to software system architecture approaches ... 25

3.1 Object-Oriented software development .. 25

3.1.1 The main features of Object-Oriented software development .. 27

3.1.1.1 Inheritance .. 28

3.1.1.2 Polymorphism ... 28

3.1.1.3 Data Hiding & Encapsulation .. 29

3.1.1.4 Reusability .. 29

3.1.2 Object-based mapping requirement approach .. 30

3.2 Behaviour Tree approach .. 33

Chapter 4: Component-Based Software Development ... 37

4.1 Why Component-Based Software Development? .. 38

4.2 What are Software Components? ... 39

4.3 The main differences between Object Oriented Software development and Component-Based Software

Development ... 41

4.4 Component Models ... 42

4.5 The restriction and limitation of the Existing Software Component Models .. 42

4.6 Exogenous Connectors Component Model (XMAN) ... 44

Chapter 5: Component-Based Mapping Requirements Approach ... 47

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Table of Contents
Abstract .. 6

Declaration ... 7

Copyright .. 8

Acknowledgments .. 10

Chapter 1: Introduction ... 11

Chapter 2: Software System’s requirements ... 15

2.2 Requirements Types ... 18

2.2.1 Architectural Requirements: .. 18

2.2.2 Functional Requirements ... 19

2.2.3 Non-Functional Requirements ... 20

2.2.4 Constraint Requirements ... 21

2.3 Attributes of Good Requirements ... 21

2.4 Requirements analysis and software design.. 23

Chapter 3: Mapping requirements to software system architecture approaches ... 25

3.1 Object-Oriented software development .. 25

3.1.1 The main features of Object-Oriented software development .. 27

3.1.1.1 Inheritance .. 28

3.1.1.2 Polymorphism ... 28

3.1.1.3 Data Hiding & Encapsulation .. 29

3.1.1.4 Reusability .. 29

3.1.2 Object-based mapping requirement approach .. 30

3.2 Behaviour Tree approach .. 33

Chapter 4: Component-Based Software Development ... 37

4.1 Why Component-Based Software Development? .. 38

4.2 What are Software Components? ... 39

4.3 The main differences between Object Oriented Software development and Component-Based Software

Development ... 41

4.4 Component Models ... 42

4.5 The restriction and limitation of the Existing Software Component Models .. 42

4.6 Exogenous Connectors Component Model (XMAN) ... 44

Chapter 5: Component-Based Mapping Requirements Approach ... 47

www.manaraa.com

5.1 PHASE 1: Requirement Analysis ... 48

5.2 PHASE 2: Components Analysis ... 54

5.2.1 Candidate Components .. 54

5.2.2 Candidates Components’ type ... 55

5.2.3 Candidate’s Computation of a component... 56

5.3 PHASE 3: Components design. .. 58

5.4 PHASE 4: System architecture building: .. 64

5.4.1 Incremental Composition ... 64

5.5 complete example ... 68

5.5.1 REQUIREMENT R.1 .. 68

5.5.2 REQUIREMENT R1.1 .. 71

5.5.2 Modifications made on the component extracted from R1.1 ... 75

5.5.3 REQUIREMENT R.1.2 (P2): .. 78

5.5.4 REQUIREMENT R.1.3 ... 83

Chapter 6: Conclusion ... 87

6.1 Accomplishments ... 87

6.2 Limitation and Challenges .. 89

REFERENCES .. 90

Appendix A- The HHSC Requirements .. 92

www.manaraa.com

Table of Figures

Figure 1: Daniel Powell: Requirements Evaluation Using Brhavior Trees- Finding from Industry 34

Figure 2: A component abstraction ... 39

Figure 3: Component Based mapping requirement approach structure .. 48

Figure 4: The steps of Requirement Analysis Phase... 53

Figure 5: The Requirements of Furnace Activation Process .. 55

Figure 6: The initial architecture of HHSC system... 60

Figure 7: exist components in the repository .. 60

Figure 8: search for non-existent component.. 61

Figure 9: Paradigm selected in component design phase. .. 61

Figure 10: The aspects that construct the atomic component ... 63

Figure 11: The Paradigm selected in the architecture building phase .. 66

Figure 12: Composition Connectors ... 67

Figure 13: WPM component design ... 74

Figure 14: WPM component modified design .. 77

Figure 15: The first partial architecture .. 78

Figure 16: ID component design .. 81

Figure 17: OV component Design .. 81

Figure 18: The second partial architecture.. 82

Figure 19: linking the second partial architecture with the current architecture of the system 83

Figure 20: SWT component Design ... 85

Figure 21: The Partial architecture from R.1.3 ... 86

Figure 22: The final system Architecture ... 86

www.manaraa.com

Table of Tables

Table 1: Verb Table .. 50

Table 2: Noun Table ... 51

Table 3: Phrase Table ... 52

Table 4: Computation Extraction .. 57

Table 5: POS Tagger result of R.1 .. 69

Table 6: the requirement analysis table of R.1 .. 69

Table 7: Component Analysis Table of R.1.. 70

Table 8: POS Tagger result of R1.1 .. 71

Table 9: Requirement Analysis Table of R1.1.. 72

Table 10: Component Analysis Table of R1.1.. 73

Table 11: POS Tagger result of R.1.2 (P1) ... 75

Table 12: Requirement Analysis table of R1.2 (P1) ... 75

Table 13: Component Analysis Table of R.1.1 + R.1.2 (P1) .. 76

Table 14: POS Tagger result of R1.2 (P2) .. 78

Table 15: Requirement Analysis Table of R.1.2 (P2) ... 79

Table 16: Component Analysis Table of R.1.2 (P2) ... 80

Table 17: The POS Tagger result of R1.3 .. 83

Table 18: The requirement Analysis Table of R.1.3 ... 84

Table 19: Component Analysis Table of R.1.3... 85

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

MAPPING REQUIREMENTS DIRECTLY TO

COMPONENT BASED SOFTWARE ARCHITECTURE

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

SOZAN A. ALJOAHNY

SCHOOL OF COMPUTER SCIENCE

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

MAPPING REQUIREMENTS DIRECTLY TO

COMPONENT BASED SOFTWARE ARCHITECTURE

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

SOZAN A. ALJOAHNY

SCHOOL OF COMPUTER SCIENCE

www.manaraa.com

Table of Contents
Abstract .. 6

Declaration ... 7

Copyright .. 8

Acknowledgments .. 10

Chapter 1: Introduction ... 11

Chapter 2: Software System’s requirements ... 15

2.2 Requirements Types ... 18

2.2.1 Architectural Requirements: .. 18

2.2.2 Functional Requirements ... 19

2.2.3 Non-Functional Requirements ... 20

2.2.4 Constraint Requirements ... 21

2.3 Attributes of Good Requirements ... 21

2.4 Requirements analysis and software design.. 23

Chapter 3: Mapping requirements to software system architecture approaches ... 25

3.1 Object-Oriented software development .. 25

3.1.1 The main features of Object-Oriented software development .. 27

3.1.1.1 Inheritance .. 28

3.1.1.2 Polymorphism ... 28

3.1.1.3 Data Hiding & Encapsulation .. 29

3.1.1.4 Reusability .. 29

3.1.2 Object-based mapping requirement approach .. 30

3.2 Behaviour Tree approach .. 33

Chapter 4: Component-Based Software Development ... 37

4.1 Why Component-Based Software Development? .. 38

4.2 What are Software Components? ... 39

4.3 The main differences between Object Oriented Software development and Component-Based Software

Development ... 41

4.4 Component Models ... 42

4.5 The restriction and limitation of the Existing Software Component Models .. 42

4.6 Exogenous Connectors Component Model (XMAN) ... 44

Chapter 5: Component-Based Mapping Requirements Approach ... 47

www.manaraa.com

5.1 PHASE 1: Requirement Analysis ... 48

5.2 PHASE 2: Components Analysis ... 54

5.2.1 Candidate Components .. 54

5.2.2 Candidates Components’ type ... 55

5.2.3 Candidate’s Computation of a component... 56

5.3 PHASE 3: Components design. .. 58

5.4 PHASE 4: System architecture building: .. 64

5.4.1 Incremental Composition ... 64

5.5 complete example ... 68

5.5.1 REQUIREMENT R.1 .. 68

5.5.2 REQUIREMENT R1.1 .. 71

5.5.2 Modifications made on the component extracted from R1.1 ... 75

5.5.3 REQUIREMENT R.1.2 (P2): .. 78

5.5.4 REQUIREMENT R.1.3 ... 83

Chapter 6: Conclusion ... 87

6.1 Accomplishments ... 87

6.2 Limitation and Challenges .. 89

REFERENCES .. 90

Appendix A- The HHSC Requirements .. 92

www.manaraa.com

Table of Figures

Figure 1: Daniel Powell: Requirements Evaluation Using Brhavior Trees- Finding from Industry 34

Figure 2: A component abstraction ... 39

Figure 3: Component Based mapping requirement approach structure .. 48

Figure 4: The steps of Requirement Analysis Phase... 53

Figure 5: The Requirements of Furnace Activation Process .. 55

Figure 6: The initial architecture of HHSC system... 60

Figure 7: exist components in the repository .. 60

Figure 8: search for non-existent component.. 61

Figure 9: Paradigm selected in component design phase. .. 61

Figure 10: The aspects that construct the atomic component ... 63

Figure 11: The Paradigm selected in the architecture building phase .. 66

Figure 12: Composition Connectors ... 67

Figure 13: WPM component design ... 74

Figure 14: WPM component modified design .. 77

Figure 15: The first partial architecture .. 78

Figure 16: ID component design .. 81

Figure 17: OV component Design .. 81

Figure 18: The second partial architecture.. 82

Figure 19: linking the second partial architecture with the current architecture of the system 83

Figure 20: SWT component Design ... 85

Figure 21: The Partial architecture from R.1.3 ... 86

Figure 22: The final system Architecture ... 86

www.manaraa.com

Table of Tables

Table 1: Verb Table .. 50

Table 2: Noun Table ... 51

Table 3: Phrase Table ... 52

Table 4: Computation Extraction .. 57

Table 5: POS Tagger result of R.1 .. 69

Table 6: the requirement analysis table of R.1 .. 69

Table 7: Component Analysis Table of R.1.. 70

Table 8: POS Tagger result of R1.1 .. 71

Table 9: Requirement Analysis Table of R1.1.. 72

Table 10: Component Analysis Table of R1.1.. 73

Table 11: POS Tagger result of R.1.2 (P1) ... 75

Table 12: Requirement Analysis table of R1.2 (P1) ... 75

Table 13: Component Analysis Table of R.1.1 + R.1.2 (P1) .. 76

Table 14: POS Tagger result of R1.2 (P2) .. 78

Table 15: Requirement Analysis Table of R.1.2 (P2) ... 79

Table 16: Component Analysis Table of R.1.2 (P2) ... 80

Table 17: The POS Tagger result of R1.3 .. 83

Table 18: The requirement Analysis Table of R.1.3 ... 84

Table 19: Component Analysis Table of R.1.3... 85

www.manaraa.com

Abstract

The success of any software system is evaluated by measuring the degree of

achieving the requirements detailed in the natural language raw requirements

which is provided by the customer. In software development, the software

system developmentprocess always starts from requirements specifications

which are defined manually from the raw requirements which are expressed in

natural language. This process is performed based on the human knowledge of

the considered problem set and ingenuity in understanding how available tools

can solve the expressed problem. Therefore, the requirements specification and

other intermediate models only give an approximation of the raw requirements

depending on the skills of the developer mapping the system specification from

the raw user requirements in natural language. This project attempts to define an

approach that maps raw requirements directly into component based

architecture by using a component based model which supports incremental

composition. Each stated requirement will be immediately mapped into

executable components that build a partial architecture which compose to the

system architecture. The aim is to bring about greater congruence between the

raw requirements given by the customer in natural language and the software

system which is eventually developed.

www.manaraa.com

Declaration

No portion of the work referred to in this dissertation has been submittedin

support of an application for another degree or qualification of this orany other

university or other institute of learning.

www.manaraa.com

Copyright

i. The author of this dissertation (including any appendices and/or

schedules to this dissertation) owns certain copyright or related rights

in it (the “Copyright”) and s/he has given The University of

Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in

hard or electronic copy, may be made only in accordance with the

Copyright, Designs and Patents Act 1988 (as amended) and

regulations issued under it or, where appropriate, in accordance with

licensing agreements which the University has entered into. This page

must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and

other intellectual property (the “Intellectual Property”) and any

reproductions of copyright works in the dissertation, for example

graphs and tables (“Reproductions”), which may be described in this

dissertation, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and

must not be made available for use without the prior written

www.manaraa.com

permission of the owner(s) of the relevant Intellectual Property and/or

Reproductions.

iv. Further information on the conditions under which disclosure,

publication and commercialisation of this dissertation, the Copyright

and any Intellectual Property and/or Reproductions described in it may

take place is available in the University IP Policy (see

http://documents.manchester.ac.uk/display.aspx?DocID=487), in any

relevant Dissertation restriction declarations deposited in the

University Library, The University Library‟s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The

University‟s Guidance for the Presentation of Dissertations.

www.manaraa.com

Acknowledgments

It is a pleasure to thank my supervisor, Dr. Kung-Kiu Lau, for his support and

guidance and for his help when I needed him. I would also like to thank my

family for providing support during my year of study. I would also like to thank

Cuong M. Tran and AzlinNordinfor their guidance andsupport throughout the

project.

www.manaraa.com

Chapter 1: Introduction

Developing a software system that meets the purpose for which it was proposed

is the main concern for any software developer. Requirements analysis is the

first and the most critical phase of the software system development. The raw

requirements can be considered as a commitment between the software system

developers and the customer who requested the system under development. The

developers always work hard to achieve the customer's aspirations by

implementing a software system that contains all the business processes which

are explicitly stated and implied in the raw requirements.

Although, the raw requirements are the most influential association between the

developers and the customer, the software system‟s development process does

not originate from natural language raw requirements specified by the customer.

The requirements specifications which are engineered from natural language

raw requirements can be considered as the basis and the first step of software

systems construction in software engineering.

www.manaraa.com

Human knowledge and ingenuity is the only resource that can be used to define

the requirements specifications and intermediate models such use cases [12].

Therefore, these requirements specifications and intermediate models do not

cover the raw requirements exactly; they, at best, only approximate them [4].

The main objective of this project is to discover a systematic approach that

processes raw requirements which are expressed in natural language and to

extract the information that helps in constructing the component-based software

system architecture directly. There is relevant research which is concerned with

the analysis of raw requirements and associating them to elements that relate to

software units in order to achieve a better match between the final system and

the raw requirements.

Current reliance on human knowledge and ingenuity in mapping out system

specifications from natural language raw requirements limits software

development to the skills of an individual [12]. There is evidently a need for a

better approach. This approach should be one that is systematic and relies less

on individual human skill.

A component based approach that maps directly from raw user requirements in

natural language to executable components is a viable answer to this problem.

This is the aim of this project. This paper aims to describe a systematic

approach to mapping user requirements directly into executable components.

www.manaraa.com

Tied to this is the notion of architecture in which we will discuss viable and

function architectural systems that allow component addition to partial

architecture in an incremental fashion.

Using the approach described in this paper we should be able to use raw

requirement to immediately select components from the repository or develop

the components and deposit them in a repository. This would then be followed

by constructing a partial architecture and then compose it with the system

architecture after that returning to the raw requirements and carry on in that

manner. Now clear the system must allow for extensibility and that is the detail

that this paper goes into. This paper will also describe how we will use existing

technologies to parse user raw user requirements for valid content and how this

is then employed in deciding which component to make use of.

The foundation of this paper is that an individual raw requirement can be

directly mapped to executable software components. In addition to this, it is also

possible to develop a systematic manner in which to join these components

together whilst allowing flexibility for any other requirement to be added into

the system at any stage of development [7]. In other words, the system should

allow incremental development such that one does not need to read the full

natural language raw requirements before starting development.

www.manaraa.com

This paper will also go in quite some detail on the XMAN tool that will be used

as our component based model. The workings of this approach are discussed in

some detail with a special focus on the tools available for building partial

architectures and the use of components in the repository and adding

components to the same.

Some of this research is based on object-oriented software development while

this project approach intends to use component-based software development.

The component-based development differs from the object-oriented software

development in many features. This report will investigate these differences and

will review the literature of related works such as behaviour tree approach and

object-based mapping approach.

www.manaraa.com

Chapter 2: Software System’s

requirements

In developing any piece of software the driving force are the stakeholders and

the goal of developers is to supply stakeholders with software that meets their

specific needs. The issue of software system requirements is concerned with

ascertaining the requirements that a client has and then developing a piece of

software that meets those requirements. A number of issues arise during this

endeavour of ascertaining requirements. Sometimes the client does not know

what they actually want. Sometimes requirements are incomplete or perhaps

ambiguous. Software system requirement techniques are concerned with

overcoming these challenges. We are particularly interested in how we derive

formal specifications for an informal requirements document that is written in

natural language. How do we map the required functionality from the language

of the client to a developer perspective? This chapter touches on these particular

issues, addressing the different aspects of software requirements analysis.

www.manaraa.com

The Software Requirements Definition document sets out the functional

requirements of the software under development [13]. This document should be

drawn from a reading and interpretation of the Business Functional

Requirements definition document. Before commencement of actual

development work the Software Requirements Definition document must be

fully documented, approved and signed by all stakeholders.

To minimise risk, no actual programming beyond conceptual demonstrations

and proof of concept mockups should be undertaken until the Software

Requirements Definition is approved and signed off.

As already mentioned, the Software Requirements Definition is drawn from the

desired business functionality as laid out by the client. The first stage in

developing the definition is in setting out a clear definition of what the software

is required to do [13]. An exhaustive process of project requirements gathering

must be undertaken. A detailed exploration of project requirements gathering is

outside the scope of this paper.

The project requirements gathering stage gives a users perspective to the

software. The developers must then examine these requirements and build a

„logical model' by using recognised methods and specialist knowledge of the

www.manaraa.com

problem domain. The logical model is a high level abstraction describing

system abilities and should be free from implementation technology [14]. This

model gives structure to the problem set giving it greater manageability.

The logical model is then used in the production of an ordered set of software

requirements. These requirements would specify the level of functionality,

detail performance, set out available interfaces, give assurances over quality and

reliability etc.

This document sets out the developers‟ view of the problem set as opposed to

that of the user. The relationship between the Software Requirements Definition

document and the Business Functional Requirements is not necessarily one-to-

one and often is not.

It is very important that all the stakeholders agree on one consistent view of the

various requirements of the system. The development team will interpret the

software requirements from the user perspective and express this in the

developers view in the form of the Software Requirements Definition. There

may be a disparity between the two which is why it is essential that all

stakeholders approve and sign off the Software Requirements Definition

document before any actual development work begins.

www.manaraa.com

2.2 Requirements Types

Most software requirements can be categorised into the following: Architectural

Requirements, Functional Requirements, Non-Functional Requirements and

Constraint Requirements [15].The following section briefly examines each of

these requirements.

2.2.1 Architectural Requirements:

This is a high level description of what must be done. It identifies the system

architecture of a system that is to be developed. The architectural requirements

are primarily concerned with the shape of the solution space. They establish the

structure of a solution to a set of problems imposed by a set of requirements.

A distinction must be set between Architectural Instance and Architectural

Family. An architectural instance gives a high level abstraction of a software

system. A system architecture would describe, at the very least, how the system

is broken into different components and how those components work together,

carefully setting out dependencies and so on [2]. An effective architecture

would expose the crucial properties of a system. Here we can define crucial as

those properties that must be considered for an effective reasoning of the system

to be carried out.

www.manaraa.com

Contrast the architectural instance with an architectural family, an architectural

family sets out constraint definition on a group of associated systems.

Architectural families can be merely generic idiomatic patterns and styles (for

example, "pipe and filter" or "client-server organisation") and can be reference

architectures (for example, "OSI layered communication standard"). An

effective architecture is one that ensures a measure of integrity constraint but

also permitting a measure of flexibility that subsumes the family of systems to

be built over the life-time of the product family. Architectural requirements are

established by the developers and system architects, not the user.

2.2.2 Functional Requirements

A functional requirement defines the function of a software system or

component [15]. Functional requirements could refer to data manipulation,

calculations or data processing that define what a system is supposed to

accomplish. Functional requirements are often expressed as, "the system must

do<this>" and "the system must do<that>". Functional requirements are a high

level expression.

It is a system/software requirement that specifies a function that a

system/software system or system/software component must be capable of

performing. These are software requirements that define behaviour of the

www.manaraa.com

system, that is, the fundamental process or transformation that software and

hardware components of the system perform on inputs to produce outputs.

A functional requirement will often have a unique name and identifier, a brief

description and a rationale. The key point is the description of the required

behaviour; this must be clear and easy to understand. This type of requirements

is concerned by this research.

2.2.3 Non-Functional Requirements

Non-Functional Requirements are often described as quality requirements.

These are characteristics of the software system that the user is not able to

perceive. It is a software requirement that does not describe what the software

does, but how it will do it. An example would be software performance

requirements, software external interface requirements, software design

constraints, and software quality attributes. Non-functional requirements are

difficult to test; as such they are often evaluated subjectively.

Non-functional requirements will often, if not always, take a descriptive tone;

for example, “the system shall be <requirement>”. An example following this

would the following requirement: “the system shall be <easy to navigate>”.

www.manaraa.com

2.2.4 Constraint Requirements

 Better addressed as “constraints,” these are merely restrictions within which the

software under develop must operate or be developed under. For example a

requirement that states, “software must be ready for developed before year

2000” would be a constraint. This would be a project constraint. Constraints

often refer to non-functional requirements. An example would be a requirement

that demands that the application "require no more than 100mb of hard drive

space during installation" or that "the application must gracefully degrade on

older browsers."

2.3 Attributes of Good Requirements

The IEEE standard stipulates that a Software Requirement Document must

satisfy the following.

a.) Functionality - This should state clearly exactly what the software should do

and, if there is scope for ambiguity, what the software should not do.

b.) External Interface - This part of the specification should detail how the

system will interact with people (human computer interaction), the system's

hardware and other software.

c.) Performance - These requirements regard speed, system availability, speed

of response and recovery time of various functions.

www.manaraa.com

d.) Attributes - These are extensibility, maintainability, security, usability,

correctness, etc. considerations.

e.) Design constraints - These requirements address required standards,

implementation language, database integrity policies, resource limitations,

operating environment, etc.

Even after these types of requirements have been laid out it is important that

they conform to the rigors again imposed by the IEEE Standard. The following

are qualities of good requirements.

a.) Correct - This much is largely self explanatory. The requirements should

state what is actually meant by the client.

b.) Unambiguous - The requirement must have one interpretation. Any

ambiguities must be highlighted and the actual desired requirement stated

explicitly.

c.) Complete - All the requirements necessary for the software to be operational

must be stated.

www.manaraa.com

d.) Ranked for importance - Requirements that are fundamental to the operation

and success of the software should be listed above aesthetic and non-crucial

requirements.

e.) Verifiable - Requirements should avoid subjectivity. Instead of requiring the

software to simply be "fast," requirements should state "on form submission

user should receive response in no more than 600 milliseconds."

2.4 Requirements analysis and software design

Requirements analysis is the process of investigating the properties of a

specification and developing an initial software model [12]. It describes the set

of tasks involved in determining the exact needs or conditions that need to be

met to satisfy the requirements of a client. There are a number of recognized

techniques in the literature on how best to conduct Requirements analysis. A

full a in-depth examination of all these techniques is outside the scope of this

paper. However this section will briefly examine some of the key techniques in

use. This much is necessary for the sake of comparison with our own

component based direct mapping approach that will be introduced in a later

chapter.

www.manaraa.com

Use Cases can be used in requirements analysis. A use case is a structure for

documenting the functional requirements of a piece of software. In each use

case a scenario that shows how the system will interact with humans or other

systems is provided. Use cases are often developed by requirements engineers

in conjunction with stakeholders. Use cases simply show the steps needed to

accomplish a task, they do not show the workings of the system or how the task

will actually be implemented at a development level.

Use cases are just one example of requirements analysis but already an

important question arises. How do we move from have the raw user requirement

in natural language and begin to move toward an more software oriented

expression? How do we manage to correctly draw fromt he raw requirements

what exactly it is that the stakeholders require? A great measure of this relies on

human ingenuity and an understanding of the problem domain.

Semantic case analysis is an effective way of moving from raw requirements in

natural language to a position where the stakeholders requirements are actually

established. This is especially true in object oriented analysis of software

requirements.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

REFERENCES

 [1] Russell J. Abbott, Program Design by Informal English Descriptors, Communications of

the ACM, November 1983, Volume 26, Number 11

[2] R G Dromey, Software Quality Institute, Architecture as an Emergent Property of

Requirements Integration

[3] Kung-Kiu Lau and Zheng Wang, Software Component Models, IEEE TRANSACTION

ON SOFTWARE ENGINEERING, VOL.33, NO.10, OCTOBER 2007

[4] C Rolland, C Proix, A Natural Language Approach for Requirements Engineering

[5] Motoshi Saeki, Hisayuki, Hajime Enomoto, Software Developmemt Process from Natural

Language Specification, Tokyo Institute of Technology

[6] Brian W. Kerningham and Dennis M. Ritchie, The C Programming Language, Prentice-

Hall 1988

[7] Kung-Kiu Lau, Ling Ling and Zheng Wang, Composing Components in Design Phase

using Exogenous Connectors, School of Computer Science, The University of Manchester

[8] Kung-Kiu Lau, Azlin Nordin and Keng-Yap Ng, Extracting Elements of Component-

based Systems from Natural Language Requirements, School of Computer Science, The

University of Manchester

[9] Dongyun Liu and Hong Mei, Mapping Requirements to Software Architecture by

Feature-Orientation, Institute of Software, School of Electronics Engineering and Computer

Science, Peking University

[10] Grady Booch, Object-Oriented Development, IEEE Transactions on Software

Engineering, Vol. SE-12, No. 2, February 1986

[11] Systems Engineering Fundamentals, Department of Defense, Systems Management

collection, January 2001

[12] Terry Anthony Byrd, Kathy L. Cossick and Robert W. Zmud, A Synthesis of Research

on Requirements Analysis and Knowledge Acquisition and Techniques

[13] Guide to the Software Definition Phase, ESA Board for Software Standardisation and

Control, ESA PSS-05-03 Issue 1 Revision 1, March 1995

[14] Martin Maguire, User Requirements Analysis, Research School in Ergonomics and

Human Factors

[15] Requirements: An Introduction, IBM DeveloperWorks, 16 Apr 2004

[16] Ivica Crnkovic, Séverine Sentilles,Aneta Vulgarakis and Michel Chaudron, A

Classification Framework for Component Models, Mälardalen University, Sweden

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

REFERENCES

 [1] Russell J. Abbott, Program Design by Informal English Descriptors, Communications of

the ACM, November 1983, Volume 26, Number 11

[2] R G Dromey, Software Quality Institute, Architecture as an Emergent Property of

Requirements Integration

[3] Kung-Kiu Lau and Zheng Wang, Software Component Models, IEEE TRANSACTION

ON SOFTWARE ENGINEERING, VOL.33, NO.10, OCTOBER 2007

[4] C Rolland, C Proix, A Natural Language Approach for Requirements Engineering

[5] Motoshi Saeki, Hisayuki, Hajime Enomoto, Software Developmemt Process from Natural

Language Specification, Tokyo Institute of Technology

[6] Brian W. Kerningham and Dennis M. Ritchie, The C Programming Language, Prentice-

Hall 1988

[7] Kung-Kiu Lau, Ling Ling and Zheng Wang, Composing Components in Design Phase

using Exogenous Connectors, School of Computer Science, The University of Manchester

[8] Kung-Kiu Lau, Azlin Nordin and Keng-Yap Ng, Extracting Elements of Component-

based Systems from Natural Language Requirements, School of Computer Science, The

University of Manchester

[9] Dongyun Liu and Hong Mei, Mapping Requirements to Software Architecture by

Feature-Orientation, Institute of Software, School of Electronics Engineering and Computer

Science, Peking University

[10] Grady Booch, Object-Oriented Development, IEEE Transactions on Software

Engineering, Vol. SE-12, No. 2, February 1986

[11] Systems Engineering Fundamentals, Department of Defense, Systems Management

collection, January 2001

[12] Terry Anthony Byrd, Kathy L. Cossick and Robert W. Zmud, A Synthesis of Research

on Requirements Analysis and Knowledge Acquisition and Techniques

[13] Guide to the Software Definition Phase, ESA Board for Software Standardisation and

Control, ESA PSS-05-03 Issue 1 Revision 1, March 1995

[14] Martin Maguire, User Requirements Analysis, Research School in Ergonomics and

Human Factors

[15] Requirements: An Introduction, IBM DeveloperWorks, 16 Apr 2004

[16] Ivica Crnkovic, Séverine Sentilles,Aneta Vulgarakis and Michel Chaudron, A

Classification Framework for Component Models, Mälardalen University, Sweden

www.manaraa.com

[17] K.-K. Lau, A. Nordin, T. Rana, and F. Taweel. Constructing component-based systems

directly from requirements using incremental composition. In Proceedings of the 2010 36th

EUROMICRO Conference on Software Engineering and Advanced Applications, SEAA ‟10,

pages 85–93, Washington, DC, USA, 2010. IEEE Computer Society

[18] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus

of english: the penn treebank. Comput. Linguist., 19:313–330, June 1993

[19] A. D. Conlin Potts, Mark Carlson, et al. Requirements analysis project. Technical report,

2000.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Appendix A- The HHSC Requirements

3. Functional Requirements

3.1 The HHSC will ACTIVATE THE FURNACE.

3.1.1 The HHSC will signal the water pump motor to start.

3.1.2 Once motor speed reaches 1000 rpm, the HHSC will signal the ignition device to be

activated and oil valve to be opened.

3.1.3 Once the system water temperature reaches a value pre-defined by the user, the

HHSC will signal the primary water circulation valve to be opened.

3.1.4 The HHSC will retain the length of time from the last DEACTIVATION and not

REACTIVATE THE FURNACE until a period of 5 minutes has elasped.

3.2 The HHSC will DEACTIVATE THE FURNACE.

3.2.1 The HHSC will signal the oil valve to close.

3.2.2 Once the oil valve is closed, the HHSC will shut down the furnace.

3.2.3 Five seconds after signaling the oil valve to close, the HHSC will signal the water

pump motor to stop.

3.3 The HHSC will signal the home heating system to heat the home.

3.3.1 When the temperature sensor in any room indicates a temperature less than t R – 2 F

(where tR is the desired temperature for that room, set by the user) and the Master

Switch is set to ON, the HHSC will ACTIVATE THE FURNACE (unless it is already

on) and open the water circulation valve for that room.

3.4 The HHSC will signal the home heating system to cease heating the home.

3.4.1 When the furnace is on and the temperature sensor in every room indicates a

temperature greater than tR + 2 F (where tR is the desired temperature for that room,

set by the user), the HHSC will close all water circulation valves that are open and

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

Appendix A- The HHSC Requirements

3. Functional Requirements

3.1 The HHSC will ACTIVATE THE FURNACE.

3.1.1 The HHSC will signal the water pump motor to start.

3.1.2 Once motor speed reaches 1000 rpm, the HHSC will signal the ignition device to be

activated and oil valve to be opened.

3.1.3 Once the system water temperature reaches a value pre-defined by the user, the

HHSC will signal the primary water circulation valve to be opened.

3.1.4 The HHSC will retain the length of time from the last DEACTIVATION and not

REACTIVATE THE FURNACE until a period of 5 minutes has elasped.

3.2 The HHSC will DEACTIVATE THE FURNACE.

3.2.1 The HHSC will signal the oil valve to close.

3.2.2 Once the oil valve is closed, the HHSC will shut down the furnace.

3.2.3 Five seconds after signaling the oil valve to close, the HHSC will signal the water

pump motor to stop.

3.3 The HHSC will signal the home heating system to heat the home.

3.3.1 When the temperature sensor in any room indicates a temperature less than t R – 2 F

(where tR is the desired temperature for that room, set by the user) and the Master

Switch is set to ON, the HHSC will ACTIVATE THE FURNACE (unless it is already

on) and open the water circulation valve for that room.

3.4 The HHSC will signal the home heating system to cease heating the home.

3.4.1 When the furnace is on and the temperature sensor in every room indicates a

temperature greater than tR + 2 F (where tR is the desired temperature for that room,

set by the user), the HHSC will close all water circulation valves that are open and

www.manaraa.com

then DEACTIVATE THE FURNACE.

3.4.2 When the furnace is on and the temperature sensor in a room indicates a

temperature greater than tR + 2 F while the temperature sensor in at least one other

room indicates a temperature less than tR + 2 F (where tR is the desired temperature

for that room, set by the user), the HHSC will close the water circulation valve for the

room in question.

3.5 The HHSC will avoid unsafe furnace operating conditions

3.5.1 When the Master Switch is set to OFF, the HHSC will DEACTIVATE THE FURNACE

within 5 seconds.

3.5.2 The HHSC will ensure that the furnace is shut down in the event of abnormal fuel oil

flow.

3.5.2.1 When the oil valve sensor indicates CLOSED, the HHSC will DEACTIVATE THE

FURNACE within 5 seconds.

3.5.2.2 When the oil flow sensor indicates a flow less than 0.01 m /sec, the HHSC will

DEACTIVATE THE FURNACE within 5 seconds

3.5.2.3 If abnormal fuel oil flow is indicated while the furnace is on, the HHSC will

DEACTIVATE THE FURNACE.

3.5.2.4 If abnormal fuel oil flow is indicated while the furnace is shut down, the HHSC will

prevent ACTIVATION OF THE FURNACE.

3.5.3 The HHSC will ensure that the furnace is shut down in the event of abnormal fuel

combustion.

3.5.3.1 If abnormal fuel combustion is indicated while the furnace is on, the HHSC will

DEACTIVATE THE FURNACE.

3.5.3.2 If abnormal fuel combustion is indicated while the furnace is shut down, the

HHSC will prevent ACTIVATION OF THE FURNACE.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

MAPPING REQUIREMENTS DIRECTLY TO

COMPONENT BASED SOFTWARE ARCHITECTURE

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

SOZAN A. ALJOAHNY

SCHOOL OF COMPUTER SCIENCE

Mapping Requirements Directly to Component Based Softwareالعنوان:
Architecture

.Al Joahny, Sozan Aالمؤلف الرئيسي:

Lau, Kung Kiu(Super.)مؤلفين آخرين:

2011التاريخ الميلادي:

مانشسترموقع:

93 - 1الصفحات:

:MD 601673رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة ماجستيرالدرجة العلمية:

University of Manchesterالجامعة:

Faculty of Engineering and Physical Sciencesالكلية:

بريطانياالدولة:

Dissertationsقواعد المعلومات:

هندسة الحاسبات، البرمجيات، تصميم النظممواضيع:

https://search.mandumah.com/Record/601673رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/601673

www.manaraa.com

MAPPING REQUIREMENTS DIRECTLY TO

COMPONENT BASED SOFTWARE ARCHITECTURE

A THESIS

SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

SOZAN A. ALJOAHNY

SCHOOL OF COMPUTER SCIENCE

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

